login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238780 Number of palindromic partitions of n whose greatest part has multiplicity 4. 2
0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 2, 5, 4, 7, 5, 10, 8, 14, 11, 20, 16, 26, 21, 37, 31, 48, 40, 65, 55, 85, 72, 113, 97, 145, 125, 190, 165, 242, 211, 313, 274, 396, 348, 505, 446, 633, 561, 801, 713, 998, 890, 1249, 1118, 1548, 1389, 1922, 1730 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,13

COMMENTS

Palindromic partitions are defined at A025065.

LINKS

Table of n, a(n) for n=0..61.

EXAMPLE

a(8) counts these partitions (written as palindromes):  3333, 11222211.

MATHEMATICA

z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Max[#]] == k) &]

Table[p[n, 1], {n, 1, 12}]

t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A000009(n-1), n>=1 *)

Table[p[n, 2], {n, 1, 12}]

t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238779 *)

Table[p[n, 3], {n, 1, 12}]

t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A087897(n-3), n>=3 *)

Table[p[n, 4], {n, 1, 12}]

t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238780 *)

(* Peter J. C. Moses, Mar 03 2014 *)

CROSSREFS

Cf. A025065, A087897, A238779.

Sequence in context: A280264 A219606 A307148 * A113298 A058705 A218699

Adjacent sequences:  A238777 A238778 A238779 * A238781 A238782 A238783

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Mar 05 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 04:41 EST 2019. Contains 329350 sequences. (Running on oeis4.)