The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238755 Second convolution of A065096. 1
 0, 0, 1, 12, 98, 684, 4403, 27048, 161412, 945288, 5466549, 31340628, 178604998, 1013573652, 5735117479, 32385232272, 182622362504, 1028897389008, 5793703249449, 32615362319580, 183593293074730, 1033535639454780, 5819389057957211, 32775522041862072, 184658694508103180 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Fung Lam, Table of n, a(n) for n = 0..1300 FORMULA G.f. = (G.f. of A065096)^2. Recurrence: (n+6)*a(n) = 225*(6-n)*a(n-8) + 1020*(2*n-9)*a(n-7) + 5164*(3-n)*a(n-6) + 76*(78*n-117)*a(n-5) - 3590*n*a(n-4) + 36*(34*n+51)*a(n-3) - 236*(n+3)*a(n-2) + 12*(2*n+9)*a(n-1), n>=8. Recurrence (of order 2): (n-2)*(n+6)*a(n) = 3*(n+1)*(2*n+3)*a(n-1) - n*(n+1)*a(n-2). - Vaclav Kotesovec, Mar 05 2014 a(n) ~ (3*sqrt(2)-4)^(7/2) * (3+2*sqrt(2))^(n+6) / (8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 05 2014 MATHEMATICA CoefficientList[Series[(1-3*x-Sqrt[1-6*x+x^2])^4/(16*x^3)^2, {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 05 2014 *) PROG (PARI) x='x+O('x^50); concat([0, 0], Vec((1-3*x-sqrt(1-6*x+x^2))^4/(16*x^3)^2)) \\ G. C. Greubel, Apr 05 2017 CROSSREFS Cf. A065096, A000108, A001003. Sequence in context: A166793 A041268 A216028 * A159449 A282285 A090230 Adjacent sequences:  A238752 A238753 A238754 * A238756 A238757 A238758 KEYWORD nonn,easy AUTHOR Fung Lam, Mar 04 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 00:14 EDT 2020. Contains 337378 sequences. (Running on oeis4.)