login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238723 Number of nX5 0..2 arrays with no element equal to the sum modulo 3 of elements to its left or elements above it 1
8, 42, 336, 1506, 11440, 48538, 359456, 1502622, 10971288, 45750856, 331213056, 1382740252, 9956765976, 41644596642, 298827741680, 1252006016638, 8963172170592, 37604588665246, 268792589572384, 1128862873230946 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 5 of A238726

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..220

FORMULA

Empirical: a(n) = 167*a(n-2) -12737*a(n-4) +590522*a(n-6) -18674960*a(n-8) +428232709*a(n-10) -7384832953*a(n-12) +97981999331*a(n-14) -1014383126841*a(n-16) +8257937387592*a(n-18) -53002256526176*a(n-20) +267655608403835*a(n-22) -1056157718233604*a(n-24) +3216196113264380*a(n-26) -7411332048725488*a(n-28) +12543993016224416*a(n-30) -14892794784221696*a(n-32) +11503438838397440*a(n-34) -5030303892805632*a(n-36) +890642713919488*a(n-38)

EXAMPLE

Some solutions for n=5

..1..2..1..2..1....2..1..1..2..1....1..2..1..2..2....2..1..1..2..2

..2..0..0..1..2....1..0..2..1..2....2..0..0..1..1....1..0..2..1..0

..2..0..0..1..2....1..0..2..1..2....1..0..0..2..1....1..2..2..1..1

..1..0..2..2..1....2..0..1..2..0....2..1..2..1..2....2..1..1..2..2

..2..0..1..1..2....1..0..2..2..1....1..2..1..2..1....1..2..1..2..1

CROSSREFS

Sequence in context: A204565 A020068 A266474 * A316283 A236328 A284337

Adjacent sequences:  A238720 A238721 A238722 * A238724 A238725 A238726

KEYWORD

nonn

AUTHOR

R. H. Hardin, Mar 03 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 3 02:59 EDT 2022. Contains 357230 sequences. (Running on oeis4.)