The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238709 Triangular array:  t(n,k) = number of partitions p = {x(1) >= x(2) >= ... >= x(k)} such that min(x(j) - x(j-1)) = k. 3
 1, 1, 1, 3, 0, 1, 4, 1, 0, 1, 7, 1, 1, 0, 1, 10, 2, 0, 1, 0, 1, 16, 2, 1, 0, 1, 0, 1, 22, 3, 1, 1, 0, 1, 0, 1, 32, 4, 2, 0, 1, 0, 1, 0, 1, 44, 5, 2, 1, 0, 1, 0, 1, 0, 1, 62, 6, 3, 1, 1, 0, 1, 0, 1, 0, 1, 83, 8, 3, 2, 0, 1, 0, 1, 0, 1, 0, 1, 113, 10, 4, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS The first two columns are essentially A047967 and A238708.  Counting the top row as row 2, the sum of numbers in row n is A000041(n) - 1. LINKS Clark Kimberling, Table of n, a(n) for n = 1..400 EXAMPLE row 2:  1 row 3:  1 ... 1 row 4:  3 ... 0 ... 1 row 5:  4 ... 1 ... 0 ... 1 row 6:  7 ... 1 ... 1 ... 0 ... 1 row 7:  10 .. 2 ... 0 ... 1 ... 0 ... 1 row 8:  16 .. 2 ... 1 ... 0 ... 1 ... 0 ... 1 row 9:  22 .. 3 ... 1 ... 1 ... 0 ... 1 ... 0 ... 1 Let m = min(x(j) - x(j-1)); then for row 5, the 4 partitions with m = 0 are 311, 221, 2111, 11111; the 1 partition with m = 1 is 32, and the 1 partition with m = 3 is 41. MATHEMATICA z = 25; p[n_, k_] := p[n, k] = IntegerPartitions[n][[k]]; m[n_, k_] := m[n, k] = Min[-Differences[p[n, k]]]; c[n_] := Table[m[n, h], {h, 1, PartitionsP[n]}]; v = Table[Count[c[n], h], {n, 2, z}, {h, 0, n - 2}]; Flatten[v] TableForm[v] CROSSREFS Cf. A238710, A238708. Sequence in context: A307451 A247629 A178116 * A245120 A226912 A177330 Adjacent sequences:  A238706 A238707 A238708 * A238710 A238711 A238712 KEYWORD nonn,tabl,easy AUTHOR Clark Kimberling, Mar 03 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 30 05:01 EDT 2020. Contains 333118 sequences. (Running on oeis4.)