The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238693 Quotients connected with the Banach matchboxes problem: Sum_{i=1..prime(n)-5} 2^(i-1)*binomial(i+1,2)/prime(n) (case 2). 10
 0, 1, 93, 571, 16143, 79333, 1755225, 160251339, 705725473, 57691858003, 1057609507815, 4500326662525, 80662044522801, 5995948088798691, 437230824840308493, 1820340203482736875, 130228506669621162901, 2230237339841166071433, 9214275012380069727751 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,3 COMMENTS A general congruence connected with the Banach matchboxes problem is the following: for k=1,2,...,(p-1)/2, Sum_{i=1..p-2k-1} 2^(i-1)*binomial(k-1+i,k) == 0 (mod p) (p is odd prime). If k=1 (case 1), then one can prove that the corresponding quotients are 2^(prime(n)-3) - A007663(n), n >= 2. LINKS Vladimir Shevelev, Banach matchboxes problem and a congruence for primes, arXiv:1110.5686 [math.HO], 2011. MATHEMATICA Array[Sum[2^(i - 1)*Binomial[i + 1, 2]/#, {i, # - 5}] &@ Prime@ # &, 19, 3] (* Michael De Vlieger, Dec 06 2018 *) PROG (PARI) a(n) = sum(i=1, prime(n)-5, 2^(i-1)*binomial(i+1, 2))/prime(n); \\ Michel Marcus, Dec 06 2018 CROSSREFS Cf. A007663, A007619, A238692. Sequence in context: A193248 A146090 A160174 * A160250 A332614 A264556 Adjacent sequences:  A238690 A238691 A238692 * A238694 A238695 A238696 KEYWORD nonn AUTHOR Vladimir Shevelev, Mar 03 2014 EXTENSIONS More terms from Peter J. C. Moses, Mar 03 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 23:45 EDT 2020. Contains 336434 sequences. (Running on oeis4.)