OFFSET
1,8
COMMENTS
Regarding "standard deviation" see Comments at A238616.
EXAMPLE
There are 22 partitions of 8, whose standard deviations are given by these approximations: 0., 3., 2., 2.35702, 1., 1.69967, 1.73205, 0., 1.24722, 0.942809, 1.22474, 1.2, 0.471405, 1., 0.707107, 0.8, 0.745356, 0., 0.489898, 0.471405, 0.349927, 0, so that a(8) = 2.
MATHEMATICA
z = 50; g[n_] := g[n] = IntegerPartitions[n]; c[t_] := c[t] = Length[t]; s[t_] := s[t] = Sqrt[Sum[(t[[k]] - Mean[t])^2, {k, 1, c[t]}]/c[t]];
Table[Count[g[n], p_ /; s[p] < 2], {n, z}] (*A238658*)
Table[Count[g[n], p_ /; s[p] <= 2], {n, z}] (*A238659*)
Table[Count[g[n], p_ /; s[p] == 2], {n, z}] (*A238660*)
Table[Count[g[n], p_ /; s[p] > 2], {n, z}] (*A238661*)
Table[Count[g[n], p_ /; s[p] >= 2], {n, z}] (*A238662*)
t[n_] := t[n] = N[Table[s[g[n][[k]]], {k, 1, PartitionsP[n]}]]
ListPlot[Sort[t[30]]] (*plot of st deviations of partitions of 30*)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 03 2014
STATUS
approved