Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #6 Mar 01 2014 19:19:04
%S 1,11,2432,6889527,44056912182,331281477244572,2561606354507677872,
%T 19900384510848921094632,154721208025657067873668152,
%U 1203080775953722005263023646232,9355115500676554620340590943203672,72745325498731282220397926627254957272
%N Number of partitions of 6^n into parts that are at most 6.
%H Alois P. Heinz, <a href="/A238633/b238633.txt">Table of n, a(n) for n = 0..250</a>
%F a(n) = [x^(6^n)] Product_{j=1..6} 1/(1-x^j).
%F G.f.: -(29386561536*x^7 +220531481280*x^6 +188259164496*x^5 -77061923145*x^4 +2575778195*x^3 -12336681*x^2 +9320*x-1) / Product_{j=0..5} 1-6^j*x.
%p gf:= -(29386561536*x^7 +220531481280*x^6 +188259164496*x^5 -77061923145*x^4 +2575778195*x^3 -12336681*x^2+9320*x-1)/ mul(1-6^j*x, j=0..5):
%p a:= n-> coeff(series(gf, x, n+1), x, n):
%p seq(a(n), n=0..20);
%Y Row n=6 of A238016.
%K nonn
%O 0,2
%A _Alois P. Heinz_, Mar 01 2014