login
A238626
Number of partitions p of n such that max(p) - 2*min(p) is a part of p.
1
0, 0, 0, 1, 1, 2, 4, 6, 8, 12, 17, 24, 31, 42, 54, 73, 92, 118, 149, 192, 236, 298, 366, 459, 558, 692, 838, 1029, 1238, 1510, 1810, 2196, 2618, 3151, 3747, 4490, 5315, 6337, 7481, 8880, 10447, 12351, 14485, 17065, 19964, 23429, 27339, 31992, 37227, 43428
OFFSET
1,6
EXAMPLE
a(6) counts these partitions: 421, 331, 3211, 31111.
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Max[p] - 2*Min[p]]], {n, 50}]
CROSSREFS
Cf. A238627.
Sequence in context: A332293 A181821 A241882 * A168657 A240498 A081954
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 02 2014
STATUS
approved