The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238623 Number of partitions of n such that neither floor(n/2) nor ceiling(n/2) is a part. 3
 0, 1, 1, 3, 3, 8, 8, 17, 19, 35, 39, 66, 76, 120, 140, 209, 246, 355, 419, 585, 695, 946, 1123, 1498, 1781, 2335, 2775, 3583, 4255, 5428, 6436, 8118, 9616, 12013, 14202, 17592, 20763, 25525, 30069, 36711, 43165, 52382, 61468, 74173, 86878, 104303, 121925 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS FORMULA a(n) + A238622(n) = A000041(n). EXAMPLE a(7) counts these 8 partitions:  7, 61, 52, 511, 2221, 22111, 211111, 1111111. MATHEMATICA z=40; g[n_] := g[n] = IntegerPartitions[n]; t1 = Table[Count[g[n], p_ /; Or[MemberQ[p, Floor[n/2]], MemberQ[p, Ceiling[n/2]]]], {n, z}]   (* A238622 [or] *) t2 = Table[Count[g[n], p_ /; Nor[MemberQ[p, Floor[n/2]], MemberQ[p, Ceiling[n/2]]]], {n, z}]   (* A238623 [nor] *) t3 = Table[Count[g[n], p_ /; Xnor[MemberQ[p, Floor[n/2]], MemberQ[p, Ceiling[n/2]]]], {n, z}]   (* A238624 [xnor] *) CROSSREFS Cf. A238622, A238624. Sequence in context: A135291 A058617 A205977 * A138135 A113166 A126872 Adjacent sequences:  A238620 A238621 A238622 * A238624 A238625 A238626 KEYWORD nonn,easy AUTHOR Clark Kimberling, Mar 02 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 4 03:40 EDT 2020. Contains 334815 sequences. (Running on oeis4.)