login
A238601
A sixth-order linear divisibility sequence related to the Fibonacci numbers: a(n) := (1/10)*Fibonacci(3*n)*Fibonacci(5*n)/Fibonacci(n).
4
1, 44, 1037, 32472, 915305, 26874892, 776952553, 22595381424, 655633561309, 19040507781020, 552780012054689, 16050219184005336, 466002944275859873, 13530204273746536948, 392841165312292809085, 11405932444267712654688, 331164788382150547106857, 9615185834308570310716196
OFFSET
1,2
COMMENTS
Let P and Q be relatively prime integers. The Lucas sequence U(n) (which depends on P and Q) is an integer sequence that satisfies the recurrence equation a(n) = P*a(n-1) - Q*a(n-2) with the initial conditions U(0) = 0, U(1) = 1. The sequence {U(n)}n>=1 is a strong divisibility sequence, i.e., gcd(U(n),U(m)) = |U(gcd(n,m))|. It follows that {U(n)} is a divisibility sequence, i.e., U(n) divides U(m) whenever n divides m and U(n) <> 0.
It can be shown that if p and q are a pair of relatively prime positive integers, and if U(n) never vanishes, then the sequence {U(p*n)*U(q*n)/U(n)}n>=1 is a linear divisibility sequence of order 2*min(p,q). For a proof and a generalization of this result see the Bala link.
Here we take p = 3 and q = 5 with P = 1 and Q = -1, for which U(n) is the sequence of Fibonacci numbers, A000045, and normalize the sequence {U(3*n)*U(5*n)/U(n)}n>=1 to have the initial term 1.
For other sequences of this type see A238600, A238602 and A238603. See also A238536.
Since Fibonacci(n) can be defined for all n, so can this sequence. - N. J. A. Sloane, May 07 2017
FORMULA
a(n) = (1/10)*(Fibonacci(3*n) + (-1)^n*Fibonacci(5*n) + Fibonacci(7*n)).
The sequence can be extended to negative indices using a(-n) = (-1)^(n+1)*a(n).
O.g.f. x*(1 + 22*x - 181*x^2 - 22*x^3 + x^4)/( (1 - 4*x - x^2)*(1 + 11*x - x^2)*(1 - 29*x - x^2) ).
Recurrence equation: a(n) = 22*a(n-1) + 250*a(n-2) - 1320*a(n-3) - 250*a(n-4) + 22*a(n-5) + a(n-6).
EXAMPLE
G.f. = x + 44*x^2 + 1037*x^3 + 32472*x^4 + 915305*x^5 + 26874892*x^6 + ... - Michael Somos, May 07 2017
MAPLE
with(combinat):
seq(1/10*fibonacci(3*n)*fibonacci(5*n)/fibonacci(n), n = 1..20);
MATHEMATICA
Table[(1/10)*(Fibonacci[3*n] + (-1)^n*Fibonacci[5*n] + Fibonacci[7*n]), {n, 0, 50}] (* G. C. Greubel, Aug 07 2018 *)
PROG
(PARI) {a(n) = if(n, fibonacci(3*n) * fibonacci(5*n) / (10 * fibonacci(n)), 0); /* Michael Somos, May 07 2017 */
(Magma) [(Fibonacci(3*n) + (-1)^n*Fibonacci(5*n) + Fibonacci(7*n))/10: n in [1..30]]; // G. C. Greubel, Aug 07 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 06 2014
STATUS
approved