login
A238594
Number of partitions p of n such that 2*min(p) is not a part of p.
3
1, 2, 2, 4, 5, 7, 10, 14, 17, 25, 32, 41, 54, 71, 88, 115, 144, 182, 229, 287, 353, 443, 545, 670, 822, 1009, 1224, 1495, 1809, 2189, 2641, 3182, 3813, 4580, 5470, 6528, 7773, 9248, 10960, 12994, 15355, 18129, 21363, 25146, 29525, 34659, 40589, 47488, 55473
OFFSET
1,2
COMMENTS
a(n) is also the number of partitions of n with a part whose multiplicity is greater than half the total number of parts. - Andrew Howroyd, Jan 17 2024
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (using data from A238589)
FORMULA
a(n) = A000041(n) - A238589(n).
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3*2^(3/2)*n^(3/2)). - Vaclav Kotesovec, Jun 09 2021
a(n) = Sum_{k>=1} x^(2*k-2)*(1 + x - x^(k-1))/(Product_{j=1..k} (1 - x^j)). - Andrew Howroyd, Jan 17 2024
EXAMPLE
a(6) counts all 11 partitions of 6 except these: 42, 321, 2211, 21111.
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; !MemberQ[p, 2*Min[p]]], {n, 50}]
PROG
(PARI) seq(n) = {Vec(sum(k=1, n\2+1, x^(2*k-2)*(1 + x - x^(k-1))/prod(j=1, k, 1 - x^j, 1 + O(x^(n-2*k+3))), O(x*x^n)))} \\ Andrew Howroyd, Jan 17 2024
CROSSREFS
Sequence in context: A195012 A333192 A323092 * A350837 A239945 A363740
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 01 2014
STATUS
approved