login
A238588
Number of partitions p of n such that 2(number of parts of p) - 2*min(p) is a part of p.
1
0, 0, 1, 0, 0, 2, 2, 3, 4, 6, 7, 10, 11, 15, 18, 23, 27, 36, 42, 52, 64, 79, 94, 117, 139, 171, 206, 248, 296, 361, 429, 514, 613, 732, 866, 1034, 1218, 1443, 1700, 2001, 2348, 2764, 3227, 3775, 4404, 5137, 5969, 6947, 8048, 9333, 10798, 12481, 14396, 16618
OFFSET
1,6
EXAMPLE
a(8) counts these partitions: 431, 422, 332.
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 2*Length[p] - 2*Min[p]]], {n, 50}]
CROSSREFS
Cf. A238587.
Sequence in context: A017830 A274149 A026928 * A353863 A102464 A082538
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 01 2014
STATUS
approved