login
A238548
Number of partitions p of n such that (number of parts of p) - min(p) is not a part of p.
1
1, 1, 2, 3, 5, 8, 12, 16, 24, 32, 43, 59, 79, 102, 138, 179, 232, 300, 388, 492, 631, 794, 1003, 1259, 1577, 1955, 2436, 3007, 3710, 4555, 5590, 6817, 8323, 10103, 12259, 14821, 17897, 21529, 25894, 31030, 37147, 44350, 52898, 62917, 74778, 88646, 104980
OFFSET
1,3
FORMULA
a(n) + A238547(n) = A000041(n).
EXAMPLE
a(6) = 8 counts all 11 partitions of 6 except these: 71, 521, 41111.
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Length[p]-Min[p]]], {n, 50}]
PROG
(PARI) a(n) = my(nb = 0); forpart(p=n, if (!vecsearch(Vec(p), #p-vecmin(p)), nb++); ); nb; \\ Michel Marcus, Jun 18 2015
CROSSREFS
Cf. A238547.
Sequence in context: A305377 A062489 A084624 * A356235 A004170 A247116
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 28 2014
STATUS
approved