login
A238525
n modulo sopfr(n), where sopfr(n) is the sum of the prime factors of n, with multiplicity.
10
0, 0, 0, 0, 1, 0, 2, 3, 3, 0, 5, 0, 5, 7, 0, 0, 2, 0, 2, 1, 9, 0, 6, 5, 11, 0, 6, 0, 0, 0, 2, 5, 15, 11, 6, 0, 17, 7, 7, 0, 6, 0, 14, 1, 21, 0, 4, 7, 2, 11, 1, 0, 10, 7, 4, 13, 27, 0, 0, 0, 29, 11, 4, 11, 2, 0, 5, 17, 0, 0, 0, 0, 35, 10, 7, 5, 6, 0, 2, 9, 39
OFFSET
2,7
COMMENTS
a(A036844(n)) = 0. - Reinhard Zumkeller, Jul 21 2014
LINKS
FORMULA
a(n) = n mod A001414(n).
EXAMPLE
a(6) = 1, because 6 mod sopfr(6) = 6 mod 5 = 1.
MATHEMATICA
Table[Mod[n, Apply[Dot, Transpose[FactorInteger[n]]]], {n, 105}] (* Wouter Meeussen, Mar 01 2014 *)
mms[n_]:=Mod[n, Total[Flatten[Table[#[[1]], #[[2]]]&/@FactorInteger[ n]]]]; Array[mms, 90, 2] (* Harvey P. Dale, May 25 2016 *)
PROG
(Haskell)
a238525 n = mod n $ a001414 n -- Reinhard Zumkeller, Jul 21 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
J. Stauduhar, Feb 28 2014
STATUS
approved