login
A238494
Number of partitions p of n such that max(p) - min(p) is not a part of p.
1
1, 2, 2, 4, 5, 7, 11, 15, 20, 28, 41, 50, 73, 92, 126, 162, 217, 270, 363, 451, 588, 734, 945, 1163, 1487, 1830, 2300, 2826, 3523, 4293, 5325, 6464, 7940, 9618, 11737, 14143, 17178, 20623, 24892, 29798, 35802, 42680, 51075, 60693, 72302, 85684, 101688
OFFSET
1,2
FORMULA
a(n) + A238493(n) = A000041(n).
EXAMPLE
a(6) counts these partitions: 6, 51, 411, 33, 3111, 222, 111111.
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; !MemberQ[p, Max[p] - Min[p]]], {n, 50}]
CROSSREFS
Cf. A238493.
Sequence in context: A277062 A355638 A027069 * A359388 A325550 A362608
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 27 2014
STATUS
approved