login
A238493
Number of partitions p of n such that max(p) - min(p) is a part of p.
1
0, 0, 1, 1, 2, 4, 4, 7, 10, 14, 15, 27, 28, 43, 50, 69, 80, 115, 127, 176, 204, 268, 310, 412, 471, 606, 710, 892, 1042, 1311, 1517, 1885, 2203, 2692, 3146, 3834, 4459, 5392, 6293, 7540, 8781, 10494, 12186, 14482, 16832, 19874, 23066, 27171, 31445, 36893
OFFSET
1,5
FORMULA
a(n) + A238494(n) = A000041(n).
EXAMPLE
a(6) = 4 counts these partitions: 42, 321, 2211, 21111.
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Max[p] - Min[p]]], {n, 50}]
CROSSREFS
Cf. A238494.
Sequence in context: A284612 A070072 A265259 * A362937 A268781 A282647
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 27 2014
STATUS
approved