login
A238492
Number of partitions of n not containing 4*(number of parts) as a part.
0
1, 2, 3, 4, 7, 11, 15, 22, 29, 41, 55, 76, 100, 133, 174, 228, 294, 381, 485, 621, 785, 993, 1245, 1562, 1943, 2418, 2989, 3692, 4535, 5568, 6800, 8299, 10085, 12240, 14803, 17882, 21527, 25886, 31035, 37162, 44381, 52938, 62989, 74858, 88770, 105135, 124270
OFFSET
1,2
COMMENTS
Number of partitions of n-4 containing at least one part < 5.
FORMULA
a(n) + A185325(n-4) = A000041(n) for n >= 4.
EXAMPLE
a(4) counts all the 5 partitions of 4 except [4].
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; ! MemberQ[p, 4*Length[p]]], {n, 40}]
CROSSREFS
Cf. A185325.
Sequence in context: A348792 A064933 A060731 * A140827 A125621 A141001
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 27 2014
STATUS
approved