login
A238491
Number of partitions of n not containing 3*(number of parts) as a part.
0
1, 2, 2, 5, 7, 11, 14, 21, 29, 41, 54, 75, 98, 132, 171, 226, 290, 377, 479, 615, 776, 984, 1231, 1548, 1924, 2397, 2960, 3661, 4495, 5523, 6742, 8234, 10003, 12149, 14688, 17752, 21368, 25704, 30814, 36911, 44078, 52591, 62573, 74384, 88206, 104491, 123506
OFFSET
1,2
COMMENTS
Number of partitions of n-3 containing at least one part < 4, for n >=3.
FORMULA
a(n+3) + A008484(n) = A000041(n).
EXAMPLE
a(11) counts all the 56 partitions of 11 except 911 and 65.
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; ! MemberQ[p, 3*Length[p]]], {n, 40}]
CROSSREFS
Cf. A008484.
Sequence in context: A265769 A308957 A240488 * A326449 A326529 A326634
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 27 2014
STATUS
approved