login
A238483
Number of partitions p of n not containing floor((min(p) + max(p))/2) as a part.
2
0, 0, 0, 1, 2, 4, 6, 11, 14, 22, 31, 42, 56, 81, 100, 136, 180, 231, 294, 388, 483, 618, 784, 980, 1221, 1543, 1894, 2354, 2912, 3572, 4372, 5375, 6525, 7947, 9648, 11668, 14074, 17001, 20389, 24475, 29319, 35017, 41744, 49759, 59065, 70103, 83044, 98189
OFFSET
1,5
FORMULA
a(n) + A238482(n) = A000041(n).
EXAMPLE
a(6) counts these partitions: 51, 42, 411, 3111.
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; !MemberQ[p, Floor[(Min[p] + Max[p])/2]]], {n, 30}]
CROSSREFS
Cf. A238482.
Sequence in context: A108868 A274261 A156913 * A238487 A138461 A173397
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 27 2014
STATUS
approved