OFFSET
1,4
COMMENTS
Conjecture: a(n) > 0 for all n > 2. Also, for each n > 6 there is a prime p < n with q(n-p) - 1 prime.
We have verified the conjecture for n up to 10^5.
See also A238458 for a similar conjecture involving the partition function p(n).
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
EXAMPLE
a(3) = 1 since 2 and q(3-2) + 1 = 1 + 1 = 2 are both prime.
a(28) = 1 since 17 and q(28-17) + 1 = q(11) + 1 = 12 + 1 = 13 are both prime.
MATHEMATICA
q[n_, k_]:=PrimeQ[PartitionsQ[n-Prime[k]]+1]
a[n_]:=Sum[If[q[n, k], 1, 0], {k, 1, PrimePi[n-1]}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 27 2014
STATUS
approved