login
A238434
Expansion of G(1) where G(k) = 1 + q^k / ( 1 - q^k * G(k+2) ).
0
1, 1, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 42, 62, 91, 135, 200, 296, 438, 648, 960, 1421, 2103, 3114, 4611, 6827, 10107, 14964, 22157, 32806, 48572, 71917, 106483, 157661, 233436, 345632, 511755, 757720, 1121901, 1661122, 2459512, 3641632, 5391915, 7983443, 11820547, 17501885, 25913856, 38368900, 56810249
OFFSET
0,6
COMMENTS
What does this sequence count?
PROG
(PARI)
N = 66; q = 'q + O('q^N);
G(k) = if(k>N, 1, 1 + q^k / ( 1 - q^k * G(k+2) ) );
Vec( G(1) )
CROSSREFS
Cf. A186085: G(1) where G(k) = 1 + q^k/( 1 - q^k * G(k+1) ).
Sequence in context: A352042 A121653 A375922 * A061418 A355909 A136423
KEYWORD
nonn
AUTHOR
Joerg Arndt, Feb 27 2014
STATUS
approved