The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238423 Number of compositions of n avoiding three consecutive parts in arithmetic progression. 15
 1, 1, 2, 3, 7, 13, 22, 42, 81, 149, 278, 516, 971, 1812, 3374, 6297, 11770, 21970, 41002, 76523, 142901, 266779, 497957, 929563, 1735418, 3239698, 6047738, 11289791, 21076118, 39344992, 73448769, 137113953, 255965109, 477835991, 892023121, 1665227859 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS These are compositions of n whose second-differences are nonzero. - Gus Wiseman, Jun 03 2019 LINKS Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..400 Wikipedia, Arithmetic progression FORMULA a(n) ~ c * d^n, where d = 1.866800016014240677813344121155900699..., c = 0.540817940878009616510727217687704495... - Vaclav Kotesovec, May 01 2014 EXAMPLE The a(5) = 13 such compositions are: 01:  [ 1 1 2 1 ] 02:  [ 1 1 3 ] 03:  [ 1 2 1 1 ] 04:  [ 1 2 2 ] 05:  [ 1 3 1 ] 06:  [ 1 4 ] 07:  [ 2 1 2 ] 08:  [ 2 2 1 ] 09:  [ 2 3 ] 10:  [ 3 1 1 ] 11:  [ 3 2 ] 12:  [ 4 1 ] 13:  [ 5 ] MAPLE # b(n, r, d): number of compositions of n where the leftmost part j #             does not have distance d to the recent part r b:= proc(n, r, d) option remember; `if`(n=0, 1,       add(`if`(j=r+d, 0, b(n-j, j, j-r)), j=1..n))     end: a:= n-> b(n, infinity, 0): seq(a(n), n=0..45); MATHEMATICA b[n_, r_, d_] := b[n, r, d] = If[n == 0, 1, Sum[If[j == r + d, 0, b[n - j, j, j - r]], {j, 1, n}]]; a[n_] := b[n, Infinity, 0]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Nov 06 2014, after Maple *) Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], !MemberQ[Differences[#, 2], 0]&]], {n, 0, 10}] (* Gus Wiseman, Jun 03 2019 *) CROSSREFS Cf. A238424 (equivalent for partitions). Cf. A238569 (equivalent for any 3-term arithmetic progression). Cf. A238686, A295370. Cf. A007862, A049988, A175342, A325545, A325849, A325851, A325874, A325875. Sequence in context: A048216 A003509 A238432 * A133370 A237283 A332861 Adjacent sequences:  A238420 A238421 A238422 * A238424 A238425 A238426 KEYWORD nonn AUTHOR Joerg Arndt and Alois P. Heinz, Feb 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 6 09:57 EDT 2020. Contains 333273 sequences. (Running on oeis4.)