The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238369 Integer area A of triangles with side lengths in the commutative ring Z[sqrt(2)]. 3
 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 80, 81, 82, 84, 85 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Generalized integer areas triangles in the ring Z[sqrt(2)] = {a + b sqrt(2)| a,b in Z}. The sequence A188158 is included in this sequence. The numbers 2*A188158(n) are in the sequence because if the integer area of the integer sided triangle (a, b, c) is A,  the area of the triangle of sides (a*sqrt(2), b*sqrt(2), c*sqrt(2)) is 2*A. The primitive areas are 1, 3, 7, 9, 10, 15, 17, 19, 21, 25,... and the numbers 2^p, 3*2^p, 7*2^p, ... are in the sequence. The numbers p^2*a(n) are in the sequence. According to the limits of the Mathematica program, it is impossible to find integer areas of values 5, 11, 13, 22, 29, 39, 45, 47, 55, 57, 58, 59, 67, 71, 73, 78, 79, 83, 87,... with sides in the ring Z(sqrt(2)). The area A of a triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2. For the same area, the number of triangles is not unique, for example the area of the triangles (3,4,5), (2,10,6*sqrt(2)),(3,6-sqrt(2),-3+5*sqrt(2)),(3,6+sqrt(2),3+5*sqrt(2)) and (7-4*sqrt(2), 3+7*sqrt(2), 4+7*sqrt(2)) is A = 6. Geometric property of the triangles in the ring Z[sqrt(2)] It is possible to obtain integers values (or rational values) for the irradius (and/or) the circumradius of the triangles (see the table below). The following table gives the first values (A, a, b, c, r, R) where A is the integer area, a,b,c are the sides in Z[sqrt(2)] and r = A/p, R = a*b*c/(4*A) are respectively the values of the irradius and the circumradius. Notation in the table: q=sqrt(2)and irrat. = irrational numbers of the form u+v*q. --------------------------------------------------------- |  A |   a     |      b      |      c |   r   |  R      | --------------------------------------------------------- |  1 |   q     |      q      |      2 | irrat.|  1      | |  2 |   1     |      5      |    4*q | irrat.|  irrat. | |  3 |   6     |      q      |    5*q | irrat.|  5      | |  4 |   6     |  5-2*q      |  5+2*q |   1/2 | 51/8    | |  6 |   3     |      4      |      5 |   1   |  5/2    | |  7 |   2     |    5*q      |    5*q | irrat.|  irrat. | |  8 |   4     |      4      |    4*q | irrat.|  irrat. | |  9 |   6     |    3*q      |    3*q | irrat.|  6      | | 10 | 5*q     |  9-2*q      | -1+3*q | irrat.|  irrat. | | 12 |   5     |      5      |      6 |   3/2 | 25/8    | | 14 |   5     |      7      |    4*q | irrat.|  irrat. | | 15 |  10     | -4+5*q      |  4+5*q | irrat.| 17/3    | | 16 |   8     |    4*q      |    4*q | irrat.|  4      | | 17 |  18     | -8+7*q      |  8+7*q | irrat.|  9      | | 18 |   6     |      6      |    6*q | irrat.|  irrat. | ........................................................ LINKS Wolfram MathWorld, Ring MATHEMATICA err=1/10^10; nn=40; q=Sqrt; lst={}; lst1={}; Do[If[u+q*v>0, lst=Union[lst, {u+q*v}]], {u, -nn, nn}, {v, -nn, nn}]; n1=Length[lst]; Do[a=Part[lst, i]; b=Part[lst, j]; c=Part[lst, k]; s=(a+b+c)/2; area2=s*(s-a)*(s-b)*(s-c); If[a*b*c !=0&&N[area2]>0&&Abs[N[Sqrt[area2]]-Round[N[Sqrt[area2]]]]

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 25 08:48 EST 2020. Contains 332221 sequences. (Running on oeis4.)