login
A238278
a(n) = |{0 < k < n: the number of primes in the interval ((k-1)*n, k*n] and the number of primes in the interval (k*n, (k+1)*n] are both prime}|.
7
0, 0, 0, 1, 1, 3, 3, 2, 7, 6, 8, 4, 9, 4, 9, 8, 1, 1, 3, 5, 4, 6, 3, 4, 4, 6, 3, 11, 8, 8, 7, 7, 12, 9, 4, 8, 9, 12, 8, 12, 8, 7, 6, 7, 7, 9, 4, 8, 9, 11, 5, 6, 3, 11, 2, 5, 14, 8, 8, 11, 2, 1, 11, 4, 6, 4, 5, 4, 1, 9, 5, 2, 10, 5, 4, 9, 10, 11, 6, 7
OFFSET
1,6
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 3.
(ii) For any integer n > 3, there is a prime p < n such that the number of primes in the interval ((p-1)*n, p*n) is a prime.
We have verified part (i) for n up to 150000.
See also A238277 and A238281 for related conjectures.
LINKS
EXAMPLE
a(17) = 1 since the interval (9*17, 10*17] contains exactly 3 primes with 3 prime, and the interval (10*17, 11*17] contains exactly 3 primes with 3 prime.
MATHEMATICA
d[k_, n_]:=PrimePi[k*n]-PrimePi[(k-1)n]
a[n_]:=Sum[If[PrimeQ[d[k, n]]&&PrimeQ[d[k+1, n]], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 22 2014
STATUS
approved