login
A238255
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with 2X2 subblock sums lexicographically nondecreasing columnwise and rowwise
7
16, 44, 44, 121, 180, 121, 286, 804, 804, 286, 676, 2818, 6828, 2818, 676, 1482, 9991, 43456, 43456, 9991, 1482, 3249, 29995, 284992, 523578, 284992, 29995, 3249, 6840, 90225, 1473792, 6683137, 6683137, 1473792, 90225, 6840, 14400, 241945, 7616082
OFFSET
1,1
COMMENTS
Table starts
....16......44.......121..........286.............676.............1482
....44.....180.......804.........2818............9991............29995
...121.....804......6828........43456..........284992..........1473792
...286....2818.....43456.......523578.........6683137.........65450601
...676....9991....284992......6683137.......171041320.......3320993180
..1482...29995...1473792.....65450601......3320993180.....128727296869
..3249...90225...7616082....640472606.....64353451945....5017308028639
..6840..241945..32986844...5080416791....992794904591..154350327958339
.14400..649320.142361644..40066932588..15160526139045.4704917436206270
.29640.1605951.537301496.267891545518.192941078342371
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) -18*a(n-3) +17*a(n-4) +22*a(n-5) -36*a(n-6) +20*a(n-8) -8*a(n-9)
k=2: [order 33]
k=3: [order 81]
EXAMPLE
Some solutions for n=3 k=4
..0..0..0..0..1....0..0..0..1..1....0..0..0..1..0....1..0..1..0..1
..0..0..0..1..1....1..0..1..0..1....0..0..0..0..1....0..0..1..0..1
..1..1..1..1..0....0..1..0..1..1....0..1..0..0..0....1..1..0..1..0
..0..0..1..0..1....1..1..1..0..0....1..1..1..1..0....1..0..0..0..1
CROSSREFS
Column 1 is A204032
Sequence in context: A253326 A204039 A235413 * A210375 A173560 A293858
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 21 2014
STATUS
approved