This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238219 The total number of 4's in all partitions of n into an even number of distinct parts. 0
 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 2, 1, 2, 3, 4, 4, 5, 6, 8, 9, 11, 13, 16, 18, 21, 25, 29, 34, 40, 46, 53, 62, 71, 82, 94, 108, 124, 142, 161, 185, 210, 238, 270, 307, 347, 392, 442, 499, 562, 632, 709 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 COMMENTS The g.f. for "number of k's" is (1/2)*x^k/(1+x^k)*prod(n>=1,1+x^n)-(1/2)*x^k/(1-x^k)*prod(n>=1,1-x^n). LINKS FORMULA a(n)=sum_{j=1..round(n/8)}A067659(n-(2*j-1)*4)-sum_{j=1..floor(n/8))}A067661(n-8*j). G.f.: (1/2)*x^4/(1+x^4)*prod(n>=1,1+x^n)-(1/2)*x^4/(1-x^4)*prod(n>=1,1-x^n). EXAMPLE a(13)=3 because the partitions in question are: 9+4, 6+4+2+1, 5+4+3+1. CROSSREFS Cf. A067659, A067661. Sequence in context: A030383 A031231 A030562 * A026833 A281544 A056882 Adjacent sequences:  A238216 A238217 A238218 * A238220 A238221 A238222 KEYWORD nonn AUTHOR Mircea Merca, Feb 20 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 25 21:00 EDT 2019. Contains 326324 sequences. (Running on oeis4.)