login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

The total number of 5's in all partitions of n into an odd number of distinct parts.
2

%I #11 Apr 29 2020 18:17:03

%S 0,0,0,0,0,1,0,0,1,1,2,1,2,2,3,5,4,5,7,8,10,11,13,16,19,23,26,31,36,

%T 42,49,56,65,75,86,100,114,130,149,170,193,220,250,283,321,363,410,

%U 463,522,587,660,742,832,933,1045,1168,1307,1459,1627,1814,2020

%N The total number of 5's in all partitions of n into an odd number of distinct parts.

%C The g.f. for "number of k's" is (1/2)*(x^k/(1+x^k))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^k/(1-x^k))*(Product_{n>=1} 1 - x^n).

%H Andrew Howroyd, <a href="/A238212/b238212.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = Sum_{j=1..round(n/10)} A067661(n-(2*j-1)*5) - Sum_{j=1..floor(n/10)} A067659(n-10*j).

%F G.f.: (1/2)*(x^5/(1+x^5))*(Product_{n>=1} 1 + x^n) + (1/2)*(x^5/(1-x^5))*(Product_{n>=1} 1 - x^n).

%e a(12) = 2 because the partitions in question are: 6+5+1, 5+4+3.

%t tn5[n_]:=Module[{op=IntegerPartitions[n],m},m=Flatten[Select[op,OddQ[ Length[#]] && Length[#]==Length[Union[#]]&]];Count[m,5]]; Array[tn5,60,0] (* _Harvey P. Dale_, Feb 06 2015 *)

%Y Column k=5 of A238450.

%Y Cf. A067659, A067661.

%K nonn

%O 0,11

%A _Mircea Merca_, Feb 20 2014

%E Terms a(51) and beyond from _Andrew Howroyd_, Apr 29 2020