login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) is A032766(k) and T(n,k) = 3*T(n-1,k) + 2 for n>0.
0

%I #17 Feb 21 2014 22:04:27

%S 0,1,2,3,5,8,4,11,17,26,6,14,35,53,80,7,20,44,107,161,242,9,23,62,134,

%T 323,485,728,10,29,71,188,404,971,1457,2186,12,32,89,215,566,1214,

%U 2915,4373,6560,13,28,98,269,647,1700,3644,8747,13121,19682,15,41,116

%N Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) is A032766(k) and T(n,k) = 3*T(n-1,k) + 2 for n>0.

%C Permutation of nonnegative integers.

%F T(n,k) = T(0,k)*3^n + T(n,0) where T(0,k) = A032766(k) and T(n,0) = 3^n - 1 = A024023(n).

%e Square array begins:

%e 0, 1, 3, 4, 6, 7, 9, 10, ...

%e 2, 5, 11, 14, 20, 23, 29, 32, ...

%e 8, 17, 35, 44, 62, 71, 89, 98, ...

%e 26, 53, 107, 134, 188, 215, 269, 296, ...

%e 80, 161, 323, 404, 566, 647, 809, 890, ...

%e 242, 485, 971, 1214, 1700, 1943, 2429, 2672, ...

%e 728, 1457, 2915, 3644, 5102, 5831, 7289, 8018, ...

%e 2186, 4373, 8747, 10934, 15308, 17495, 21869, 24056, ...

%e ...

%Y Cf. A024023, A027107, A032766, A048473, A171498, A198643, A198644, A198645, A198646.

%K nonn,tabl

%O 0,3

%A _Philippe Deléham_, Feb 20 2014