login
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) is A007494(k) and T(n,k) = 3*T(n-1,k) + 1 for n>0.
0

%I #18 Feb 21 2014 22:04:07

%S 0,2,1,3,7,4,5,10,22,13,6,16,31,67,40,8,19,49,94,202,121,9,25,58,148,

%T 283,607,364,11,28,76,175,445,850,1822,1093,12,34,85,229,526,1336,

%U 2551,5467,3280,14,37,103,256,688,1579,4009,7654,16402,9841,15,43,112,310

%N Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) is A007494(k) and T(n,k) = 3*T(n-1,k) + 1 for n>0.

%C Permutation of nonnegative integers.

%F T(n,k) = T(0,k)*3^n + T(n,0) where T(0,k) = (6*k + 1 -(-1)^k)/4 = A007494(k) and T(n,0) = (3^n - 1)/2 = A003462(n).

%e Square array begins:

%e 0, 2, 3, 5, 6, 8, 9, ...

%e 1, 7, 10, 16, 19, 25, 28, ...

%e 4, 22, 31, 49, 58, 76, 85, ...

%e 13, 67, 94, 148, 175, 229, 256, ...

%e 40, 202, 283, 445, 523, 688, 769, ...

%e 121, 607, 850, 1336, 1579, 2065, 2308, ...

%e 364, 1822, 2551, 4009, 4738, 6196, 6925, ...

%e 1093, 5467, 7654, 12028, 14215, 18589, 20776, ...

%e 3280, 16402, 22963, 36085, 42646, 55768, 62329, ...

%e 9841, 49207, 68890, 108256, 127939, 167305, 186988, ...

%e ...

%Y Cf. A003462, A007494, A052909, A060816, A237930, A238055

%K nonn,tabl

%O 0,2

%A _Philippe Deléham_, Feb 20 2014