login
A238181
Decimal expansion of sum_(n>=1) H(n)^2/n^3 where H(n) is the n-th harmonic number (Quadratic Euler Sum S(2,3)).
5
1, 6, 5, 1, 9, 4, 2, 7, 9, 2, 7, 0, 4, 4, 9, 8, 6, 2, 3, 9, 6, 2, 6, 9, 3, 7, 6, 1, 1, 1, 4, 4, 9, 4, 0, 1, 6, 1, 1, 7, 6, 3, 1, 7, 5, 1, 5, 9, 6, 5, 6, 0, 6, 3, 3, 2, 1, 3, 8, 5, 2, 0, 9, 5, 6, 0, 8, 5, 9, 7, 5, 3, 0, 1, 0, 5, 3, 8, 0, 9, 8, 8, 2, 5, 7, 7, 6, 6, 5, 0, 0, 4, 2, 8, 2, 1, 7, 0, 6, 9
OFFSET
1,2
LINKS
Philippe Flajolet, Bruno Salvy, Euler Sums and Contour Integral Representations, Experimental Mathematics 7:1 (1998) page 24.
FORMULA
7/2*zeta(5) - zeta(2)*zeta(3).
EXAMPLE
1.6519427927044986239626937611144940161...
MATHEMATICA
7/2*Zeta[5] - Zeta[2]*Zeta[3] // RealDigits[#, 10, 100]& // First
KEYWORD
nonn,cons
AUTHOR
STATUS
approved