

A238169


Decimal expansion of sum_(n>=1) H(n)^3/n^4 where H(n) is the nth harmonic number.


5



1, 3, 8, 1, 4, 6, 8, 3, 1, 0, 5, 0, 3, 8, 5, 2, 3, 7, 3, 0, 0, 4, 7, 8, 5, 1, 2, 0, 4, 0, 6, 6, 2, 2, 6, 9, 9, 9, 3, 3, 4, 4, 3, 5, 6, 3, 9, 0, 5, 3, 6, 1, 6, 9, 1, 0, 0, 0, 0, 8, 5, 3, 3, 0, 9, 5, 3, 8, 7, 2, 4, 2, 2, 3, 7, 7, 7, 5, 8, 4, 6, 7, 2, 9, 5, 9, 9, 3, 2, 6, 4, 5, 0, 9, 3, 0, 5, 7, 4, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000
Philippe Flajolet, Bruno Salvy, Euler Sums and Contour Integral Representations, Experimental Mathematics 7:1 (1998) page 16.


FORMULA

Equals (231/16)*Zeta(7)  (51/4)*Zeta(3)*Zeta(4) + 2*Zeta(2)*Zeta(5).


EXAMPLE

1.38146831050385237300478512040662269993...


MATHEMATICA

RealDigits[(231/16)*Zeta[7]  (51/4)*Zeta[3]*Zeta[4] + 2*Zeta[2]*Zeta[5], 10, 100][[1]] (* G. C. Greubel, Dec 30 2017 *)


PROG

(PARI) (231/16)*zeta(7)  (51/4)*zeta(3)*zeta(4) + 2*zeta(2)*zeta(5) \\ G. C. Greubel, Dec 30 2017


CROSSREFS

Cf. A152648, A152649, A152651, A238166, A238167, A238168.
Sequence in context: A084185 A073227 A016550 * A341414 A086245 A247392
Adjacent sequences: A238166 A238167 A238168 * A238170 A238171 A238172


KEYWORD

nonn,cons


AUTHOR

JeanFrançois Alcover, Feb 19 2014


STATUS

approved



