%I #12 Dec 30 2017 17:26:20
%S 1,1,0,5,8,2,6,4,4,4,4,3,8,8,1,7,8,5,4,0,0,8,8,4,5,7,6,8,8,7,6,6,8,0,
%T 9,8,4,5,4,9,7,9,6,2,4,2,4,1,9,6,0,4,1,5,3,5,1,7,2,9,7,9,4,0,5,6,3,8,
%U 0,6,4,6,1,8,3,0,7,0,1,4,6,9,3,3,8,6,0,1,7,7,2,5,3,9,0,0,5,7,5,7
%N Decimal expansion of sum_(n>=1) H(n,2)/n^4 where H(n,2) = A007406(n)/A007407(n) is the n-th harmonic number of order 2.
%H G. C. Greubel, <a href="/A238166/b238166.txt">Table of n, a(n) for n = 1..10000</a>
%H Philippe Flajolet, Bruno Salvy, <a href="http://algo.inria.fr/flajolet/Publications/FlSa98.pdf">Euler Sums and Contour Integral Representations</a>, Experimental Mathematics 7:1 (1998) page 16.
%F Equals zeta(3)^2 - zeta(6)/3.
%e 1.1058264444388178540088457688766809845497962424196...
%t RealDigits[Zeta[3]^2 - 1/3*Zeta[6], 10, 100][[1]]
%o (PARI) zeta(3)^2-Pi^6/2835 /* _Michel Marcus_, Jul 04 2014 */
%Y Cf. A007406, A007407, A152648, A152649, A152651, A238167, A238168, A238169.
%K nonn,cons,easy
%O 1,4
%A _Jean-François Alcover_, Feb 19 2014