The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238160 A skewed version of triangular array A029653. 0
 1, 0, 2, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 5, 2, 0, 0, 0, 4, 7, 2, 0, 0, 0, 1, 9, 9, 2, 0, 0, 0, 0, 5, 16, 11, 2, 0, 0, 0, 0, 1, 14, 25, 13, 2, 0, 0, 0, 0, 0, 6, 30, 36, 15, 2, 0, 0, 0, 0, 0, 1, 20, 55, 49, 17, 2, 0, 0, 0, 0, 0, 0, 7, 50, 91, 64, 19, 2, 0, 0, 0, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Triangle T(n,k), 0<=k<=n, read by rows, given by (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. Row sums are Fib(n+2). Column sums are A003945(k). Diagonal sums are (-1)^(n+1)*A109266(n+1). T(3*n,2*n) = A029651(n). LINKS FORMULA G.f.: (1+x*y)/(1-x*y-x^2*y). T(n,k) = T(n-1,k-1) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 0, T(1,1) = 2, T(n,k) = 0 if k<0 or if k>n. Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000045(n+2), A026150(n+1), A108306(n), A164545(n), A188168(n+1) for x = 0, 1, 2, 3, 4, 5 respectively. EXAMPLE Triangle begins: 1; 0, 2; 0, 1, 2; 0, 0, 3, 2; 0, 0, 1, 5, 2; 0, 0, 0, 4, 7, 2; 0, 0, 0, 1, 9, 9, 2; 0, 0, 0, 0, 5, 16, 11, 2; 0, 0, 0, 0, 1, 14, 25, 13, 2; 0, 0, 0, 0, 0, 6, 30, 36, 15, 2; 0, 0, 0, 0, 0, 1, 20, 55, 49, 17, 2; 0, 0, 0, 0, 0, 0, 7, 50, 91, 64, 19, 2; ... CROSSREFS Cf. A029635, A029653, A178524. Sequence in context: A058650 A112177 A115723 * A178524 A321731 A212357 Adjacent sequences:  A238157 A238158 A238159 * A238161 A238162 A238163 KEYWORD easy,nonn,tabl AUTHOR Philippe Deléham, Feb 18 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 22:34 EDT 2020. Contains 336465 sequences. (Running on oeis4.)