OFFSET
0,3
COMMENTS
s(n,k), signed Stirling numbers of the first kind (A048994):
1,
0, 1,
0, -1, 1,
0, 2, -3, 1,
0, -6, 11, -6, 1
etc.
The unsigned numbers, abs(s(n,k)), are the unsigned Stirling numbers of the first kind, A132393(n).
For the integration of these triangles we divide by A002260(n+1). For the first one the reduced numbers are
1,
0, 1/2,
0, -1/2, 1/3,
0, 1, -1, 1/4,
0, -3, 11/3, -3/2, 1/5,
etc.
Hence the denominators in the example.
Sums by rows: 1, 1/2, -1/6, 1/4, -19/30, 27/12 = 9/4, = (-1)^(n+1)*A141417(n)/A002790(n) = A006232(n)/A006233(n) (*).
Because the integration is between 0 and 1, the fractions appear in a numerical Adams integration with the denominators multiplied by n!, i.e., 1, 1/2, -1/12, 1/24, -19/720, 27/1440, ... . Reference, array p. 36.
(*) The Cauchy numbers of the first type or the Bernoulli numbers of the second kind.
REFERENCES
P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969 (see array p. 56).
N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924
EXAMPLE
MATHEMATICA
Table[StirlingS1[n, k]/(k+1) // Denominator, {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2014 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Paul Curtz, Feb 18 2014
STATUS
approved