login
A238156
Triangle T(n,k), 0<=k<=n, read by rows, given by (0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
0
1, 0, 2, 0, 2, 3, 0, 2, 7, 4, 0, 2, 11, 16, 5, 0, 2, 15, 36, 30, 6, 0, 2, 19, 64, 91, 50, 7, 0, 2, 23, 100, 204, 196, 77, 8, 0, 2, 27, 144, 385, 540, 378, 112, 9, 0, 2, 31, 196, 650, 1210, 1254, 672, 156, 10, 0, 2, 35, 256, 1015, 2366, 3289, 2640, 1122, 210, 11
OFFSET
0,3
COMMENTS
Row sums are A001519(n+1) = A122367(n).
Diagonal sums are A052969(n).
FORMULA
G.f.: (1-x)/(1-x-2*x*y+x^2*y^2).
Sum_{k=0..n} T(n,k)*2^k = 4^n = A000302(n).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-2), T(0,0) = 1, T(1,0) = 0, T(1,1) = 2, T(n,k) = 0 if k<0 or if k>n.
EXAMPLE
Triangle begins:
1;
0, 2;
0, 2, 3;
0, 2, 7, 4;
0, 2, 11, 16, 5;
0, 2, 15, 36, 30, 6;
0, 2, 19, 64, 91, 50, 7;
0, 2, 23, 100, 204, 196, 77, 8;
0, 2, 27, 144, 385, 540, 278, 112, 9;
0, 2, 31, 196, 650, 1210, 1254, 672, 156, 10;
0, 2, 35, 256, 1015, 2366, 3289, 2640, 1122, 210, 11;
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Feb 18 2014
STATUS
approved