This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238086 Square array A(n,k), n>=1, k>=1, read by antidiagonals, where column k is the increasing list of all primes p such that (p+k)^2+k is prime but (p+j)^2+j is not prime for all 0
 3, 7, 5, 11, 31, 13, 29, 47, 37, 19, 193, 41, 59, 43, 23, 139, 331, 113, 61, 79, 53, 107, 523, 409, 163, 67, 97, 73, 181, 293, 563, 457, 173, 71, 103, 83, 101, 277, 359, 769, 487, 199, 127, 241, 89, 17, 191, 541, 389, 853, 787, 211, 131, 271, 109 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Alois P. Heinz, Antidiagonals n = 1..100, flattened EXAMPLE Column k=3 contains prime 47 because (47+3)^2+3 = 2503 is prime and (47+2)^2+2 = 2403 = 3^3*89 and (47+1)^2+1 = 2305 = 5*461 are composite. Square array A(n,k) begins: :   3,   7,  11,  29, 193,  139, 107,  181, ... :   5,  31,  47,  41, 331,  523, 293,  277, ... :  13,  37,  59, 113, 409,  563, 359,  541, ... :  19,  43,  61, 163, 457,  769, 389,  937, ... :  23,  79,  67, 173, 487,  853, 397, 1381, ... :  53,  97,  71, 199, 787, 1019, 401, 1741, ... :  73, 103, 127, 211, 829, 1489, 433, 2551, ... :  83, 241, 131, 251, 991, 1553, 461, 2617, ... MAPLE A:= proc() local h, p, q; p, q:= proc() [] end, 2;       proc(n, k)         while nops(p(k))

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 19:27 EDT 2019. Contains 324234 sequences. (Running on oeis4.)