login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A237998 Number of partitions of 2^n into parts that are at most n. 11
0, 1, 3, 10, 64, 831, 26207, 2239706, 567852809, 454241403975, 1192075219982204, 10510218491798860052, 315981966712495811700951, 32726459268483342710907384794, 11771239570056489326716955796095261, 14808470136486015545654676685321653888199 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..62

A. V. Sills and D. Zeilberger, Formulae for the number of partitions of n into at most m parts (using the quasi-polynomial ansatz) (arXiv:1108.4391 [math.CO])

FORMULA

a(n) = [x^(2^n)] Product_{j=1..n} 1/(1-x^j).

a(n) ~ 2^(n*(n-1)) / (n!*(n-1)!). - Vaclav Kotesovec, Jun 05 2015

EXAMPLE

a(1) = 1: 11.

a(2) = 3: 22, 211, 1111.

a(3) = 10: 332, 2222, 3221, 3311, 22211, 32111, 221111, 311111, 2111111, 11111111.

MATHEMATICA

a[n_] := SeriesCoefficient[Product[1/(1 - x^j), {j, 1, n}], {x, 0, 2^n}];

Table[a[n], {n, 0, 12}] (* Jean-Fran├žois Alcover, Nov 03 2018 *)

CROSSREFS

Column k=2 of A238010.

Cf. A236810, A237512, A237999, A238000, A238001, A258672.

Sequence in context: A160921 A042705 A041014 * A167939 A206724 A306187

Adjacent sequences:  A237995 A237996 A237997 * A237999 A238000 A238001

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Feb 16 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 19:56 EDT 2019. Contains 321349 sequences. (Running on oeis4.)