login
A237987
a(n) = Hermite(n,1/5)*5^n/2^round(n/2)*(-1)^floor(n/2).
2
1, 1, 23, 73, 1579, 8879, 179617, 1511467, 28410041, 330703441, 5730852343, 88406712593, 1399170969139, 27921184747039, 398888195476097, 10171302856939747, 129240467589656881, 4197761610365555681, 46531675504873063063, 1935524400169373119513
OFFSET
0,3
COMMENTS
The "quintessence" of sequence A158960. Intended to be read as: H_n(1/5) = (-1)^floor(n/2)*2^round(n/2)*a(n)/5^n; where "round" could be replaced by "ceiling".
First negative term is a(32). Georg Fischer, Feb 15 2019
LINKS
MATHEMATICA
Table[HermiteH[n, 1/5]*5^n/2^Ceiling[n/2]*(-1)^Floor[n/2], {n, 0, 50}] (* G. C. Greubel, Jul 12 2018 *)
PROG
(PARI) vector(30, n, polhermite(n, 1/5)*5^n/2^((n+1)\2)/(-1)^(n\2))
CROSSREFS
Sequence in context: A044542 A141945 A267821 * A157270 A102109 A238677
KEYWORD
sign
AUTHOR
M. F. Hasler, Feb 16 2014
STATUS
approved