OFFSET
0,1
COMMENTS
a(n-1) agrees with the graph radius of the n-Sierpinski carpet graph for n = 2 to at least n = 5. See A100774 for the graph diameter of the n-Sierpinski carpet graph.
The inverse binomial transform gives 3, 7, 14, 28, 56, ... i.e., A005009 with a leading 3. - R. J. Mathar, Jan 08 2020
First differences of A108765. The digital root of a(n) for n > 1 is always 4. a(n) is never divisible by 7 or by 12. a(n) == 10 (mod 84) for odd n. a(n) == 31 (mod 84) for even n > 0. Conjecture: This sequence contains no prime factors p == {11, 13, 23, 61 71, 73} (mod 84). - Klaus Purath, Apr 13 2020
This is a subsequence of A017209 for n > 1. See formula. - Klaus Purath, Jul 03 2020
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Graph Radius.
Eric Weisstein's World of Mathematics, Sierpinski Carpet Graph.
Index entries for linear recurrences with constant coefficients, signature (4,-3).
FORMULA
G.f.: (3-2*x)/((1-x)*(1-3*x)).
a(n) = 3*a(n-1) + 1 for n > 0, a(0)=3. (Note that if a(0) were 1 in this recurrence we would get A003462, if it were 2 we would get A060816. - N. J. A. Sloane, Dec 06 2019)
a(n) = 4*a(n-1) - 3*a(n-2) for n > 1, a(0)=3, a(1)=10.
a(n) = 2*a(n-1) + 3*a(n-2) + 2 for n > 1.
a(n) = A199109(n) - 1.
a(n) = (7*3^n - 1)/2. - Eric W. Weisstein, Mar 13 2018
From Klaus Purath, Apr 13 2020: (Start)
a(n) = 7*A003462(n) + 3.
a(n) = A116952(n) + 2. (End)
a(n) = A017209(7*(3^(n-2)-1)/2 + 3), n > 1. - Klaus Purath, Jul 03 2020
E.g.f.: exp(x)*(7*exp(2*x) - 1)/2. - Stefano Spezia, Aug 28 2023
EXAMPLE
Ternary....................Decimal
10...............................3
101.............................10
1011............................31
10111...........................94
101111.........................283
1011111........................850
10111111......................2551
101111111.....................7654, etc.
MATHEMATICA
(* Start from Eric W. Weisstein, Mar 13 2018 *)
Table[(7 3^n - 1)/2, {n, 0, 20}]
(7 3^Range[0, 20] - 1)/2
LinearRecurrence[{4, -3}, {10, 31}, {0, 20}]
CoefficientList[Series[(3 - 2 x)/((x - 1) (3 x - 1)), {x, 0, 20}], x]
(* End *)
PROG
(PARI) Vec((3 - 2*x) / ((1 - x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, Nov 27 2019
(Magma) [3^(n+1) + (3^n-1)/2: n in [0..40]]; // Vincenzo Librandi, Jan 09 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Feb 16 2014
STATUS
approved