login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A237773 Number of (n+1)X(2+1) 0..2 arrays with the maximum plus the upper median of every 2X2 subblock differing from its horizontal and vertical neighbors by exactly one 1
300, 1456, 7220, 34738, 168120, 843310, 4176684, 20234876, 98488592, 490709904, 2423229752, 11787571072, 57592668148, 285613778928, 1407652995368, 6867790813994, 33631458148732, 166268484651892, 818421568319140 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 2 of A237779

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 16*a(n-3) +421*a(n-4) +284*a(n-5) +499*a(n-6) +1042*a(n-7) -2558*a(n-8) +328*a(n-9) -1384*a(n-10) -3450*a(n-11) +5485*a(n-12) +222*a(n-13) +384*a(n-14) -2174*a(n-15) +305*a(n-16) +252*a(n-17) +36*a(n-18) +64*a(n-19) -16*a(n-20) for n>22

EXAMPLE

Some solutions for n=5

..1..2..0....0..1..1....0..2..0....1..1..0....1..2..1....1..1..0....0..0..2

..0..1..2....0..1..2....0..0..1....0..0..2....0..1..2....0..0..2....2..1..2

..1..1..0....2..1..2....0..1..1....1..0..0....0..1..0....1..0..0....2..0..1

..2..0..1....2..1..1....1..0..2....0..1..0....2..1..1....0..1..0....1..1..0

..2..0..2....1..0..0....1..2..1....2..0..1....0..2..0....2..1..0....0..0..2

..1..1..2....1..0..1....2..1..1....2..0..2....0..1..2....1..2..0....1..2..2

CROSSREFS

Sequence in context: A154061 A253650 A054026 * A188252 A128391 A328132

Adjacent sequences:  A237770 A237771 A237772 * A237774 A237775 A237776

KEYWORD

nonn

AUTHOR

R. H. Hardin, Feb 13 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 16:46 EDT 2019. Contains 328373 sequences. (Running on oeis4.)