login
Number of partitions of n such that 2*(least part) < number of parts.
4

%I #9 Feb 22 2014 13:17:43

%S 0,0,1,2,4,6,10,14,21,30,42,58,80,108,144,192,252,329,426,549,702,895,

%T 1131,1427,1789,2237,2781,3450,4259,5247,6436,7878,9607,11693,14182,

%U 17172,20727,24974,30008,35997,43072,51457,61330,72988,86677,102785,121645

%N Number of partitions of n such that 2*(least part) < number of parts.

%e a(5) = 4 counts these partitions: 311, 221, 2111, 11111.

%t z = 55; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := Length[p];

%t Table[Count[q[n], p_ /; 2 Min[p] < t[p]], {n, z}] (* A237758 *)

%t Table[Count[q[n], p_ /; 2 Min[p] <= t[p]], {n, z}] (* A118084 *)

%t Table[Count[q[n], p_ /; 2 Min[p] == t[p]], {n, z}] (* A237757 *)

%t Table[Count[q[n], p_ /; 2 Min[p] > t[p]], {n, z}] (* A237799 *)

%t Table[Count[q[n], p_ /; 2 Min[p] >= t[p]], {n, z}] (* A237800 *)

%Y Cf. A118084, A237757, A237799, A237800.

%K nonn,easy

%O 1,4

%A _Clark Kimberling_, Feb 15 2014