login
G.f.: exp( Sum_{n>=1} 5*Fibonacci(n-1)*Fibonacci(n+1) * x^n/n ).
1

%I #18 Jan 02 2021 04:19:53

%S 1,0,5,5,25,49,150,365,990,2550,6726,17550,46015,120390,315275,825299,

%T 2160775,5656855,14809980,38772875,101508876,265753500,695751900,

%U 1821501900,4768754125,12484760124,32685526625,85571819345,224029931845,586517975725,1535523995826,4020054011225,10524638038410

%N G.f.: exp( Sum_{n>=1} 5*Fibonacci(n-1)*Fibonacci(n+1) * x^n/n ).

%C Compare to the g.f. of A054888.

%C Given g.f. A(x), note that A(x)^(1/5) is not an integer series.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0,5,5,0,-1).

%F G.f.: 1 / ( (1-3*x+x^2) * (1+x)^3 ).

%F a(n) = (2*Lucas(2*n+5) + (28+25*n+5*n^2)*(-1)^(n))/50 where Lucas = A000032. - _Greg Dresden_, Jan 01 2021

%e G.f.: A(x) = 1 + 5*x^2 + 5*x^3 + 25*x^4 + 49*x^5 + 150*x^6 + 365*x^7 + ...

%e where the logarithm begins:

%e log(A(x)) = 5*1*2*x^2/2 + 5*1*3*x^3/3 + 5*2*5*x^4/4 + 5*3*8*x^5/5 + 5*5*13*x^6/6 + 5*8*21*x^7/7 + 5*13*34*x^8/8 + ...

%o (PARI) {a(n)=polcoeff(exp(sum(m=1, n, 5*fibonacci(m-1)*fibonacci(m+1)*x^m/m) + x*O(x^n)), n)}

%o for(n=0,36,print1(a(n),", "))

%Y Cf. A237655, A054888, A000032.

%K nonn

%O 0,3

%A _Paul D. Hanna_, May 05 2014