login
Numbers k such that tau(sigma(tau(k))) = sigma(tau(sigma(k))), where tau is A000005 and sigma is A000203.
2

%I #20 Nov 04 2024 14:48:29

%S 1,4,9,25,81,289,1681,3481,5041,7921,10201,17161,27889,29929,85849,

%T 146689,331776,458329,491401,552049,579121,597529,683929,703921,

%U 734449,786432,829921,1190281,1203409,1352569,1394761,1423249,1481089,1885129,2036329,2211169

%N Numbers k such that tau(sigma(tau(k))) = sigma(tau(sigma(k))), where tau is A000005 and sigma is A000203.

%C The squares of the terms of A053182 are a subset of this sequence. In fact, in general, if p is prime we have tau(p)=2 and tau(p^2)=3. Therefore tau(p^2)=3 -> sigma(3)=4 -> tau(4)=tau(2^2)=3 and if p belongs to A053182 we also have that sigma(p^2)=p^2+p+1 (prime) -> tau(p^2+p+1)=2 -> sigma(2)=3.

%H Amiram Eldar, <a href="/A237613/b237613.txt">Table of n, a(n) for n = 1..100</a>

%p with(numtheory); P:=proc(q) local n;

%p for n from 1 to q do

%p if tau(sigma(tau(n)))=sigma(tau(sigma(n))) then print(n); fi;

%p od; end: P(10^6);

%t s = {}; Do[If[DivisorSigma[1, DivisorSigma[0, DivisorSigma[1, n]]] == DivisorSigma[0, DivisorSigma[1, DivisorSigma[0, n]]], AppendTo[s, n]], {n, 1, 2500000}]; s (* _Amiram Eldar_, Aug 17 2019 *)

%t With[{ds=DivisorSigma},Select[Range[2220000],ds[0,ds[1,ds[0,#]]]==ds[1,ds[0,ds[1,#]]]&]] (* _Harvey P. Dale_, Nov 04 2024 *)

%o (PARI) s=[]; for(n=1, 2500000, if(sigma(sigma(sigma(n, 0)), 0) == sigma(sigma(sigma(n), 0)), s=concat(s, n))); s \\ _Colin Barker_, Feb 10 2014

%o (Magma) [k:k in [1..2300000]| #Divisors(SumOfDivisors(#Divisors(k))) eq SumOfDivisors(#Divisors(SumOfDivisors(k)))]; // _Marius A. Burtea_, Aug 17 2019

%Y Cf. A000005, A000203, A053182.

%K nonn,changed

%O 1,2

%A _Paolo P. Lava_, Feb 10 2014