

A237598


a(n) = {0 < k < prime(n): pi(k*n) is a square}, where pi(.) is given by A000720.


13



1, 1, 1, 2, 2, 2, 4, 3, 5, 2, 3, 5, 3, 6, 1, 2, 3, 3, 5, 3, 5, 2, 6, 4, 4, 5, 3, 6, 4, 3, 2, 5, 3, 4, 3, 4, 4, 3, 6, 4, 3, 4, 2, 1, 2, 9, 3, 4, 4, 4, 5, 7, 4, 7, 3, 6, 7, 3, 7, 7, 5, 1, 4, 5, 3, 3, 10, 5, 4, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Conjecture: (i) a(n) > 0 for all n > 0.
(ii) For each n > 9, there is a positive integer k < prime(n)/2 such that pi(k*n) is a triangular number.
See also A237612 for the least k > 0 with pi(k*n) a square.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..2500
Z.W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014


EXAMPLE

a(3) = 1 since pi(3*3) = 2^2 with 3 < prime(3) = 5.
a(6) = 2 since pi(4*6) = 3^2 with 4 < prime(6) = 13, and pi(9*6) = 4^2 with 9 < prime(6) = 13.
a(15) = 1 since pi(28*15) = 9^2 with 28 < prime(15) = 47.
a(62) = 1 since pi(68*62) = 24^2 with 68 < prime(62) = 293.
a(459) = 1 since pi(2544*459) = 301^2 with 2544 < prime(459) = 3253.


MATHEMATICA

sq[n_]:=IntegerQ[Sqrt[PrimePi[n]]]
a[n_]:=Sum[If[sq[k*n], 1, 0], {k, 1, Prime[n]1}]
Table[a[n], {n, 1, 70}]


CROSSREFS

Cf. A000040, A000217, A000290, A000720, A237578, A237597, A237612, A237614.
Sequence in context: A239858 A031437 A282561 * A138241 A234615 A029145
Adjacent sequences: A237595 A237596 A237597 * A237599 A237600 A237601


KEYWORD

nonn


AUTHOR

ZhiWei Sun, Feb 10 2014


STATUS

approved



