

A237558


Decimal expansion of (1/Pi)*arccos(1/sqrt(3)).


0



3, 0, 4, 0, 8, 6, 7, 2, 3, 9, 8, 4, 6, 9, 6, 3, 6, 4, 9, 1, 4, 5, 7, 2, 2, 2, 0, 3, 8, 8, 7, 8, 4, 5, 4, 4, 3, 4, 1, 6, 8, 5, 6, 7, 5, 2, 8, 0, 2, 9, 9, 8, 5, 6, 3, 5, 6, 0, 3, 0, 8, 5, 0, 9, 8, 8, 9, 9, 9, 2, 9, 5, 6, 6, 1, 2, 7, 8, 8, 7, 6, 5, 6, 4, 8, 9, 4, 0, 8, 6, 9, 1, 2, 1, 1, 2, 7, 4, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Known to be irrational. If m is a positive integer (1/Pi)*arccos(1/sqrt(m)) is rational iff m=1,2 or 4.
A constant giving the location (x = y) of the thermodynamic center (also called warmest point or "hot spot") of a unit isosceles right triangle. The thermodynamic center is the warmest point in a convex heat conductor with unitary initial temperature and with boundary grounded at zero temperature. The convex heat conductor here considered is the isosceles right triangle x>0, y>0, x+y <= 1.  JeanFrançois Alcover, Jul 26 2016


REFERENCES

M. Aigner and G. M. Ziegler, Proofs from The Book, Chap. 7, p. 40, SpringerVerlag, Berlin, 1999.


LINKS

Table of n, a(n) for n=0..98.
Steven R. Finch, In limbo: Three triangle centers, arXiv:1406.0836 [math.HO] 2014 p. 11.


FORMULA

0 < x < 1/2 maximizing sin(Pi x)*sin(2Pi x), that is x = arctan(sqrt(2)) / Pi, solution to sin(Pi x) = 3 sin(3 Pi x).  JeanFrançois Alcover, Jul 26 2016


EXAMPLE

0.30408672...


MAPLE

arccos(1/sqrt(3))/Pi; evalf(%) ; # R. J. Mathar, Aug 02 2016


MATHEMATICA

Join[{0}, RealDigits[1/Pi ArcCos[1/Sqrt[3]], 10, 120][[1]]] (* Harvey P. Dale, Feb 22 2015 *)


CROSSREFS

Cf. A275336.
Sequence in context: A027636 A173425 A289445 * A060034 A308216 A035544
Adjacent sequences: A237555 A237556 A237557 * A237559 A237560 A237561


KEYWORD

nonn,cons


AUTHOR

Benoit Cloitre, Feb 09 2014


STATUS

approved



