login
A237530
Number of non-equivalent (mod D_3) ways to choose three points in an n X n X n triangular grid so that they do not form a 2 X 2 X 2 subtriangle.
1
0, 4, 22, 82, 231, 566, 1216, 2410, 4428, 7712, 12780, 20392, 31409, 47032, 68594, 97878, 136836, 187998, 254100, 338602, 445213, 578524, 743424, 945860, 1192126, 1489768, 1846734, 2272430, 2776725, 3371170, 4067840, 4880734, 5824442, 6915732, 8172036, 9613236
OFFSET
2,2
COMMENTS
Without the restriction "non-equivalent (mod D_3)" the numbers are given by A234250.
LINKS
FORMULA
a(n) = (n^6 + 3*n^5 - 3*n^4 + 10*n^3 - 48*n^2 + IF(n==1 mod 2)*(27*n^2 - 45*n - 9) + IF(n==1 mod 3)*64)/288.
G.f.: x^3*(x^7-x^6-2*x^5-15*x^4-13*x^3-16*x^2-10*x-4) / ((x-1)^7*(x+1)^3*(x^2+x+1)). - Colin Barker, Feb 14 2014
MATHEMATICA
LinearRecurrence[{3, 0, -7, 3, 6, 0, -6, -3, 7, 0, -3, 1}, {0, 4, 22, 82, 231, 566, 1216, 2410, 4428, 7712, 12780, 20392}, 40] (* Harvey P. Dale, Dec 09 2021 *)
CROSSREFS
Sequence in context: A201127 A259709 A078155 * A096167 A060453 A038382
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Feb 13 2014
STATUS
approved