login
A237527
Numbers n of the form p^2-p-1 = A165900(p), for prime p, such that n^2-n-1 = A165900(n) is also prime.
3
5, 155, 505, 2755, 3421, 6805, 11341, 27721, 29755, 31861, 44309, 49505, 52211, 65791, 100171, 121451, 134321, 185329, 195805, 236681, 252505, 258571, 292139, 325469, 375155, 380071, 452255, 457651, 465805, 563249, 676505, 1041419, 1061929
OFFSET
1,1
COMMENTS
All numbers are congruent to 1 mod 10, 5 mod 10, or 9 mod 10.
A subsequence of A165900 and A028387. - M. F. Hasler, Mar 01 2014
FORMULA
a(n) = A165900(A230026(n)). - M. F. Hasler, Mar 01 2014
EXAMPLE
5 = 3^2-3-1 (3 is prime) and 5^2-5-1 = 19 is also prime. So, 5 is a member of this sequence.
PROG
(Python)
import sympy
from sympy import isprime
{print(n**2-n-1) for n in range(10**4) if isprime(n) and isprime((n**2-n-1)**2-(n**2-n-1)-1)}
(PARI) s=[]; forprime(p=2, 40000, n=p^2-p-1; if(isprime(n^2-n-1), s=concat(s, n))); s \\ Colin Barker, Feb 10 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Derek Orr, Feb 09 2014
STATUS
approved