login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A237520 Irregular triangular array read by rows: T(n,k) is the number of n-step walks (steps +1,-1) on the x-axis beginning at the origin that are on the origin for the last time on step 2k, n>=0, 0<=k<=floor(n/2). 1
1, 2, 2, 2, 4, 4, 6, 4, 6, 12, 8, 12, 20, 12, 12, 20, 40, 24, 24, 40, 70, 40, 36, 40, 70, 140, 80, 72, 80, 140, 252, 140, 120, 120, 140, 252, 504, 280, 240, 240, 280, 504, 924, 504, 420, 400, 420, 504, 924, 1848, 1008, 840, 800, 840, 1008, 1848, 3432, 1848, 1512, 1400, 1400, 1512, 1848 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Column k=0 is A063886.

Row sums give A000079.

LINKS

Alois P. Heinz, Rows n = 0..200, flattened

FORMULA

G.f. for column k: binomial(2k,k) x^k*A(x) where A(x) is the o.g.f. for A063886.

EXAMPLE

1;

2;

2,   2;

4,   4;

6,   4,   6;

12,  8,   12;

20,  12,  12,  20;

40,  24,  24,  40;

70,  40,  36,  40,  70;

140, 80,  72,  80,  140;

252, 140, 120, 120, 140, 252;

T(4,1) = 4 because we have: (-1,+1,-1,-1), (-1,+1,+1,+1), (+1,-1,-1,-1), (+1,-1,+1,+1). These walks have 4 steps and are on the origin for the last time on step 2*1=2.

MAPLE

T:= (n, k)-> 2^irem(n, 2)*binomial(2*k, k)*

    binomial(2*iquo(n, 2)-2*k, iquo(n, 2)-k):

seq(seq(T(n, k), k=0..iquo(n, 2)), n=0..14);  # Alois P. Heinz, May 10 2014

MATHEMATICA

nn=20; d=(1-(1-4x^2)^(1/2))/(2x^2); Map[Select[#, #>0&]&, Transpose[Table[ CoefficientList[Series[Binomial[2n, n]x^(2n)(1-2x^2d)/(1-2x), {x, 0, nn}], x], {n, 0, nn/2}]]]//Grid

(* or *)

f[list_]:=If[Max[Flatten[Position[list, 0]]]== -Infinity, 0, Max[Flatten[ Position[list, 0]]]]; Table[Distribution[Map[f, Map[Accumulate, Strings[{-1, 1}, n]]]], {n, 0, 10}]//Grid

CROSSREFS

Cf. A067804.

Sequence in context: A005859 A274143 A166271 * A268241 A134318 A246452

Adjacent sequences:  A237517 A237518 A237519 * A237521 A237522 A237523

KEYWORD

nonn,tabf,walk

AUTHOR

Geoffrey Critzer, Feb 08 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 19:36 EDT 2018. Contains 316293 sequences. (Running on oeis4.)