login
A237454
Minimal representation (considered minimal in any canonical base b > 3) of n in a binary system with two distinct digits "1" and "3", not allowing zeros, where a digit d in position p (p = 1,2,3,...,n) represents the value d^p.
1
1, 11, 3, 13, 113, 1113, 11113, 111113, 1111113, 31, 131, 33, 133, 1133, 11133, 111133, 1111133, 11111133, 111111133, 1111111133, 11111111133, 111111111133, 1111111111133, 11111111111133, 111111111111133, 1111111111111133, 11111111111111133, 111111111111111133, 311, 1311, 313, 1313, 11313, 111313, 1111313, 11111313, 331, 1331, 333, 1333, 11333
OFFSET
1,2
COMMENTS
If digit "1" exists, the digits used in these numeral systems do not need to be consecutive.
EXAMPLE
a(11) = 131 because 1^3 + 3^2 + 1^1 = 11.
CROSSREFS
Cf. A235860.
Sequence in context: A302556 A088262 A110406 * A375614 A110434 A110798
KEYWORD
nonn,base
AUTHOR
Robin Garcia, Feb 08 2014
STATUS
approved