login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A237427 a(0)=0, a(1)=1; thereafter, if n is k-th ludic number [i.e., n = A003309(k)], a(n) = 1 + (2*a(k-1)); otherwise, when n is k-th nonludic number [i.e., n = A192607(k)], a(n) = 2*a(k). 25
0, 1, 3, 7, 2, 15, 6, 5, 14, 4, 30, 31, 12, 13, 10, 28, 8, 11, 60, 62, 24, 26, 20, 29, 56, 9, 16, 22, 120, 61, 124, 48, 52, 40, 58, 112, 18, 63, 32, 44, 240, 25, 122, 27, 248, 96, 104, 21, 80, 116, 224, 36, 126, 57, 64, 88, 480, 50, 244, 54, 496, 17, 192, 208, 42 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Shares with permutation A237058 the property that all odd numbers occur in positions given by ludic numbers (A003309: 1, 2, 3, 5, 7, 11, 13, 17, ...), while the even numbers > 0 occur in positions given by nonludic numbers (A192607: 4, 6, 8, 9, 10, 12, 14, 15, 16, ...). However, instead of placing terms into those positions in monotone order this sequence recursively permutes the order of both subsets with the emerging permutation itself, so this is a kind of "deep" variant of A237058.

Alternatively, this can be viewed as yet another "entanglement permutation", where two pairs of complementary subsets of natural numbers are entangled with each other. In this case a complementary pair ludic/nonludic numbers (A003309/A192607) is entangled with a complementary pair odd/even numbers (A005408/A005843).

Because 2 is the only even ludic number, it implies that, apart from a(2)=3, odd numbers occur in odd positions only (along with many even numbers that also occur in odd positions).

LINKS

Antti Karttunen, Table of n, a(n) for n = 0..10000

Index entries for sequences that are permutations of the natural numbers

FORMULA

a(0)=0, a(1)=1; thereafter, if A192490(n) = 1 [i.e., n is ludic], a(n) = 1+(2*a(A192512(n)-1)); otherwise a(n) = 2*a(A236863(n)) [where A192512 and A236863 give the number of ludic and nonludic numbers <= n, respectively].

EXAMPLE

For n=2, with 2 being the second ludic number (= A003309(2)), the value is computed as 1+(2*a(2-1)) = 1+2*a(1) = 1+2 = 3, thus a(2)=3.

For n=3, with 3 being the third ludic number (= A003309(3)), the value is computed as 1+(2*a(3-1)) = 1+2*a(2) = 1+2*3 = 7, thus a(3)=7.

For n=4, with 4 being the first nonludic number (= A192607(1)), the value is computed as 2*a(1) = 2 = a(4).

For n=5, with 5 being the fourth ludic number (= A003309(4)), the value is computed as 1+(2*a(4-1)) = 1+2*a(3) = 1+2*7 = 15 = a(5).

For n=9, with 9 being the fourth nonludic number (= A192607(4)), the value is computed as 2*a(4) = 2*2 = 4 = a(9).

PROG

(Haskell)

import Data.List (elemIndex); import Data.Maybe (fromJust)

a237427 = (+ 1) . fromJust . (`elemIndex` a237126_list)

(Scheme, with Antti Karttunen's IntSeq-library for memoizing definec-macro)

(definec (A237427 n) (cond ((< n 2) n) ((= 1 (A192490 n)) (+ 1 (* 2 (A237427 (- (A192512 n) 1))))) (else (* 2 (A237427 (A236863 n))))))

;; Antti Karttunen, Feb 07 2014

CROSSREFS

Inverse permutation of A237126.

Similar permutations: A135141/A227413, A243287/A243288, A243343-A243346.

Cf. A003309, A192607, A192490, A192512, A236863.

Sequence in context: A227351 A246377 A260421 * A210203 A318467 A324713

Adjacent sequences:  A237424 A237425 A237426 * A237428 A237429 A237430

KEYWORD

nonn,look

AUTHOR

Antti Karttunen and Reinhard Zumkeller, Feb 07 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 15:11 EST 2019. Contains 329960 sequences. (Running on oeis4.)